Conservation Laws of Nonlinear-Evolution Equations
نویسندگان
چکیده
منابع مشابه
Conservation laws for nonlinear telegraph equations
A complete conservation law classification is given for nonlinear telegraph (NLT) systems with respect to multipliers that are functions of independent and dependent variables. It turns out that a very large class of NLT systems admits four nontrivial local conservation laws. The results of this work are summarized in tables which display all multipliers, fluxes and densities for the correspond...
متن کاملComparing symmetries and conservation laws of nonlinear telegraph equations
A comparison is made between the symmetries and conservation laws admitted by nonlinear telegraph NLT systems. Such systems are not variational. Unlike the situation for variational systems where all conservation laws arise from symmetries, there are many NLT systems that admit more conservation laws than symmetries. The results are summarized in a table which includes the numbers of symmetries...
متن کاملApproximate Solutions of Nonlinear Conservation Laws and Related Equations
During the recent decades there was an enormous amount of activity related to the construction and analysis of modern algorithms for the approximate solution of nonlinear hyperbolic conservation laws and related problems. To present some aspects of this successful activity, we discuss the analytical tools which are used in the development of convergence theories for these algorithms. These incl...
متن کاملConservation laws of generalized higher Burgers and linear evolution equations
By the Cole-Hopf transformation, with any linear evolution equation in 1 + 1 dimensions a generalized Burgers equation is associated. We describe local conservation laws of these equations. It turns out that any generalized Burgers equation has only one conservation law, while a linear evolution equation with constant coefficients has an infinite number of (x, t)independent conservation laws if...
متن کاملLocal Conservation Laws of Second-Order Evolution Equations
Generalizing results by Bryant and Griffiths [Duke Math. J., 1995, V.78, 531–676], we completely describe local conservation laws of second-order (1 + 1)-dimensional evolution equations up to contact equivalence. The possible dimensions of spaces of conservation laws prove to be 0, 1, 2 and infinity. The canonical forms of equations with respect to contact equivalence are found for all nonzero ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Progress of Theoretical Physics
سال: 1974
ISSN: 0033-068X,1347-4081
DOI: 10.1143/ptp.52.886